Abstract
Norbormide (NRB) is a Rattus-selective toxicant, which was serendipitously discovered in 1964 and formerly marketed as an eco-friendly rodenticide that was deemed harmless to non-Rattus species. However, due to inconsistent efficacy and the emergence of second-generation anticoagulants, its usage declined, with registration lapsing in 2003. NRBs' lethal action in rats entails irreversible vasoconstriction of peripheral arteries, likely inducing cardiac damage: however, the precise chain of events leading to fatality and the target organs involved remain elusive. This unique contractile effect is exclusive to rat arteries and is induced solely by the endo isomers of NRB, hinting at a specific receptor involvement. Understanding NRB's mechanism of action is crucial for developing species-selective toxicants as alternatives to the broad-spectrum ones currently in use. Recent research efforts have focused on elucidating its cellular mechanisms and sites of action using novel NRB derivatives. The key findings are as follows: NRB selectively opens the rat mitochondrial permeability transition pore, which may be a factor that contributes to its lethal effect; it inhibits rat vascular KATP channels, which potentially controls its Rattus-selective vasoconstricting activity; and it possesses intracellular binding sites in both sensitive and insensitive cells, as revealed by fluorescent derivatives. These studies have led to the development of a prodrug with enhanced pharmacokinetic and toxicological profiles, which is currently undergoing registration as a novel efficacious eco-sustainable Rattus-selective toxicant. The NRB-fluorescent derivatives also show promise as non-toxic probes for intracellular organelle labelling. This review documents in more detail these developments and their implications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.