Abstract

The t(4;14)(p16.3;q32) translocation that occurs uniquely in a subset of multiple myeloma tumors results in ectopic expression of wild-type FGFR3 and enhanced expression of MMSET, a gene that is homologous to the MLL gene that is involved in acute myeloid leukemias. Wild-type FGFR3 appears to be weakly transforming in a hematopoietic murine model, whereas FGFR3 that contains kinase-activating mutations is strongly transforming in NIH3T3 cells and the hematopoietic model. The subsequent acquisition of FGFR3 kinase-activating mutations in some tumors with t(4;14) translocations confirms a role for FGFR3 in tumor progression. However, it remains to be proven if and how dysregulation of FGFR3 or MMSET mediates an early oncogenic process in multiple myeloma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.