Abstract

Previous in vitro studies have shown that the degradation of [Met5]enkephalin-Arg6-Phe7 during incubation with cerebral membrane preparations is largely prevented by a mixture of three peptidase inhibitors: amastatin, captopril, and phosphoramidon. The present in vivo study shows that the inhibitory effect of [Met5]enkephalin-Arg6-Phe7 administered intra-third-ventricularly on the tail-flick response was increased more than 1000-fold by the intra-third-ventricular pretreatment with three peptidase inhibitors. The antinociceptive effect produced by the [Met5]enkephalin-Arg6-Phe7 in rats pretreated with any combination of two peptidase inhibitors was significantly smaller than that in rats pretreated with three peptidase inhibitors, indicating that any residual single peptidase could inactivate significant amounts of the [Met5]enkephalin-Arg6-Phe7. The present data, together with those obtained from previous studies, clearly show that amastatin-, captopril-, and phosphoramidon-sensitive enzymes play important roles in the inactivation of endogenous opioid peptides, such as [Met5]enkephalin, [Met5]enkephalin-Arg6-Phe7, [Met5]enkephalin-Arg6-Gly7-Leu8, and dynorphin A (1-8), administered intra-third-ventricularly to rats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.