Abstract

Abstract As subsystems of the Asian summer monsoon, summer precipitation variations in India and the northern part of eastern China (NEC) are physically connected. This study noted that the connection has been significantly enhanced after 1999 compared to 1979–98, which is due to the strengthened water vapor transportation connection between the two regions. That is associated with interdecadal variations of the combined effects of El Niño–Southern Oscillation (ENSO) and sea surface temperature anomalies (SSTAs) over the tropical Indian Ocean (TIO) on the northwest Pacific subtropical high (NWPSH) and the Indo-Pacific Walker cell. Against the background of La Niña, the strengthened NWPSH and Indo-Pacific Walker cell favor water vapor transport to India and the NEC since 1999. Accordingly, summer precipitation in the two regions increases simultaneously, leading to the enhancement of the summer precipitation teleconnection between them. In addition, the influence of TIO SSTAs and the Indian Ocean dipole (IOD) on Indo-Pacific circulations decreases, which further enhances the relative importance of ENSO on the summer precipitation in the two regions. However, during 1979–98, La Niña SSTAs has weak effects on the NWPSH and Indo-Pacific Walker cell, the negative TIO SSTAs significantly weaken NWPSH, and the negative IOD also obstructs the westward extension of the Indo-Pacific Walker cell. Circulations and water vapor transportation related to the Indian Ocean and NEC summer precipitation are inconsistent, resulting in a weak precipitation teleconnection between them. The above conclusions are also validated by extreme case analysis and CMIP6 models. Significance Statement This paper mainly studies the influences of different types of ENSO and Indian Ocean SSTAs on the interdecadal variations of the summer precipitation relationship between India and the northern part of eastern China (NEC). We find that the summer precipitation relationship between them is strengthened again after 1999, which deepens the understanding of summer precipitation in Asia and has great significance for improving dynamic models’ prediction skills. The interdecadal variations of the combined effects of the Indian and Pacific Oceans are the fundamental reasons for the interdecadal variations of precipitation relationships, which promotes the understanding of interactions of different oceans and their impacts on Asian climate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call