Abstract

In this letter, we mainly investigate how to enhance the damaged quantum entanglement under an open Dirac system with the Hawking effect within Schwarzschild space-time. We consider that particle A held by Alice undergoes generalized amplitude damping noise in a flat space-time, and that another particle B by Bob entangled with A is under a Schwarzschild space-time. Subsequently, we put forward a physical scheme to recover the damaged quantum entanglement by prior weak measurement on subsystem A before the interaction with the decoherence noise followed by post-measurement filtering operation. The results indicate that our scheme can effectively recover the damaged quantum entanglement affected by the Hawking effect and the noisy channel. Thus, our work might be beneficial to understand the dynamic behavior of the quantum state and recover the damaged quantum entanglement with open Dirac systems under the Hawking effect in the background of a Schwarzschild black hole.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.