Abstract

M13KO7, a modified M13 phage variant, carries the p15A replication origin and Tn903 kanamycin resistance gene. This study aimed to optimize M13KO7's replication by substituting the p15A origin with the higher-copy pMB1 origin (500-700 copy numbers). A 6431-nucleotide fragment from the M13KO7 plasmid lacking the p15A replication origin and kanamycin resistance gene was amplified using a long polymerase chain reaction (PCR). The modified M13AMB1 plasmid was created by adding adenine to the 3' ends of this fragment and ligating it to the pMB1-containing fragment using T/A cloning. Afterward, to prepare the phage, pM13AMB1 was transformed into E. coli TG1 bacteria, and then, using the PEG-NaCl precipitation, the modified phage was propagated. The modified phage titer was determined utilizing the serial dilution and the qPCR methods, compared with the M13KO7 phage. The results showed that in the serial dilution method, the titers of modified phage and M13KO7 phage were 4.8 × 1014 and 7 × 1012 pfu/mL, respectively. Besides, the phage titer calculated by the qPCR method for the modified phage was equal to 1.3 × 109 pfu/mL, whereas it was 4.08 × 108 pfu/mL for the M13KO7 phage. This study provides evidence that replication origin replacement led to a significant increase in phage titers. It highlights the importance of replication optimization for molecular biology applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.