Abstract

Background/Aims: This study was designed to investigate the expression and function of gap junction protein connexin 45 (Cx45) in renal interlobar artery (RIA) of spontaneously hypertensive rats (SHR), and the association between hypertension and enhanced vasoconstrictive response in SHR. Methods: Western blot analysis and pressure myography were used to examine the differences in expression and function of Cx45 in vascular smooth muscle cells (VSMCs) of RIA between SHR and normotensive Wistar-Kyoto (WKY) rats. Results: Our results demonstrated that 1) whole-cell patch clamp measurements showed that the membrane capacitance and conductance of in-situ RIA VSMCs of SHR were significantly greater than those of WKY rats (p<0.05, n=6), suggesting that the coupling of gap junction between VSMCs of RIA was enhanced in SHR; 2) the KCl or phenylephrine (PE)-stimulated RIA constriction was more pronounced in SHR than that in WKY rats (p<0.05, n=10). After applying a gap junction inhibitor 18β-glycyrrhetintic acid (18β-GA), the inhibitory effect of 18β-GA on KCl or PE-induced vasoconstriction was greater in SHR (p<0.05, n=10); and 3) the expression of Cx45 in RIA of SHR was greater than that in WKY rats (p<0.05, n=3) at 4, 12 and 48 wks of age. Conclusions: The hypertension-induced elevation of Cx45 may affect communication between VSMCs and coupling between VSMCs and endothelium, which results in an increased vasoconstrictive response in renal artery and might contribute to the development of hypertension.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call