Abstract

CdS photocorrosion seriously impeded its application in photocatalysis, especially for water splitting. Here we report new strategies to improve CdS photocorrosion resistance properties significantly by coating Ni2P shell and assembling an artificial gill to remove newly formed O2 from water. Ni2P@CdS catalyst can achieve the over-all water splitting under visible light irradiation without addition of any sacrifice reagent and noble metal loading. Compared with CdS itself, the 10Ni2P@CdS photocatalyst exhibits excellent photocatalytic activity for hydrogen evolution (251.4μmol of H2 in 180min) with a high AQE (3.89% at 430nm). This catalyst also presents high photocurrent, low overpotential (−0.32V vs SCE), and long fluorescence lifetime (16.27ns) of excited charges. Cd2+ ions concentration measured by ICP and long term stability results verified the anti-photocorrosion role of Ni2P shell on CdS during water splitting reaction. The activity and stability of 10Ni2P@CdS is even superior to typical 1Pt@CdS catalyst. Our results confirm CdS can be an active catalyst for photocatalytic hydrogen generation from water under visible irradiation if its stability is enhanced by protection of anti-photocorrosion over-coating shell and removing the nascent formed oxygen from water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.