Abstract
Cocoon-shaped Sn(4+)-doped ZnO nanoparticles have been synthesized by a solvothermal method using carbon microspheres as a template. The optimum doping level for photocatalysis is 3% (g. atom). Powder X-ray diffractograms show that the ZnO has a primitive hexagonal crystal structure and that doping ZnO with Sn(4+) increases the unit cell lengths and the Zn-O bond lengths. Larger crystal growth along the c-axis is also observed. The measured size of the cocoon-shaped Sn(4+)-doped ZnO nanoparticles is larger than the mean crystallite size. Solid state impedance spectroscopy studies reveal that Sn(4+)-doping increases the charge transfer resistance. Doping does not significantly modify the optical band gap, but does suppress green emission. A decrease in the number of crystal defects due to oxygen vacancies is likely to be a reason for the enhanced photocatalytic properties of the cocoon-shaped Sn(4+)-doped ZnO nanoparticles. Doping ZnO with Sn(4+) enhances the bactericidal activity as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.