Abstract

Rare-earth phosphates were thought to be good candidates as ultraviolet/deep ultraviolet optical materials due to their relatively large bandgap and optical properties. In this paper, the authors screened out a family of XPO4 (X = Sc, Y, La, and Lu) compounds with an enhanced bandgap (HSE06 bandgap ≥ 7.61 eV) and birefringence (0.0934-0.2003@1064 nm) using first-principles calculations. The origin of enhanced optical properties was investigated using projected density of states, distortion indices, and Born effective charges. The results show that the PO4 anionic groups and X-O polyhedra give the main contribution in determining the optical properties, and the PO4 anionic groups give more contribution than other functional basic units. The spin-orbit interaction was also investigated. Similar band structures were found after spin-orbit coupling (SOC) was considered, and slightly enhanced birefringence was found when SOC was applied to these rare-earth phosphates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call