Abstract

This paper reports an enhanced and broadband near-infrared fluorescence emission in the Pr3+/Nd3+ co-doped tellurite glass, which was prepared using melt-quenching technique. Under the excitation of 488 nm laser diode (LD), three near-infrared emission bands at around 0.9, 1.04 and 1.30 μm from 3P1,0 → 1G4, 1G4→3H4 and 1G4→3H5 radiative transitions respectively were observed in the Pr3+ single-doped glass, and the fluorescence intensities increased further with the introduction of Nd3+ ions, which is mainly attributed to the energy transfers from Nd3+ to Pr3+ emissions. Meanwhile, the spectral overlapping of Pr3+:1G4→3H4 and Nd3+:4F3/2 → 4I11/2 radiative transitions resulted in a broadband emission ranging from 1000 to 1100 nm, whose full-width at half-maximum (FWHM) reached about 66 nm. Additionally, the spectroscopic properties of Nd3+ and Pr3+ ions were analyzed using Judd-Ofelt theory and the thermal stability property of prepared glass was characterized by the differential scanning calorimeter (DSC) measurement, and larger than 134 °C for the difference ΔT(=Tx−Tg) was observed, which indicates its feasibility for later fiber drawing. The enhanced fluorescence and broadband emission indicate that Pr3+/Nd3+ co-doped tellurite glass can be applied in the near-infrared band tunable lasers and broadband optical amplifiers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call