Abstract

Layered double hydroxides (LDHs) have attracted increasing attention as promising candidates by anion exchanges and selective adsorption in the fluoride treatment field. In this study, three new ternary Zn-Co-Cr-LDHs were synthesized by primarily a one-step TEA-assisted hydrothermal process at various times. They were characterized by X-ray powder diffraction, thermogravimetric analysis, scanning electron microscopy, X-ray photoelectron spectroscopy, N2 gas adsorption and desorption curves and zeta potential. The effects of dosage amount, reaction duration, initial solution pH, temperature, and co-existing ions were evaluated systematically for the Zn-Co-Cr-LDHs in fluoride removal process. Compared to Zn-LDHs and Zn-Co-LDHs, three Zn-Co-Cr-LDHs showed excellent adsorption performance for F- with maximum adsorption amounts of 108.87 mg/g, 97.27 mg/g, and 97.62 mg/g, respectively. The coexisting anions have less effect on the adsorption of F-. The introduction Cr3+ ion modulation in the Zn-Co-LDHs greatly improved the adsorption of fluoride ions. The kinetic process of fluoride ion adsorption is in accordance with the quasi-secondary kinetic model and the Elovich model, and the adsorption isotherm is in accordance with the Langmuir model. The quasi-secondary kinetic and Elovich models suggest that the process is chemisorption-controlled ion exchange adsorption. Zn-Co-Cr-LDHs are expected to have potential applications in fluoride removal process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.