Abstract

In this paper, a multichannel metal–insulator–metal (MIM) waveguide structure based on a disk resonator is proposed. The transmission characteristics of visible and near-infrared light in the waveguide are investigated by using the finite-difference time-domain (FDTD) method. The results show that the structure has typical band-pass filter function due to the wave resonance in the nanodisk. The energy of the second-order resonance wavelength of the disk can transmit through each output port averagely, which is realized by the energy separation function of the electromagnetic wave. Moreover, the wavelength will transmit through the output port in redshift as the radius and/or the refractive index of the disk are increased. The transmissivity is sharply reduced with the increase of the coupling thickness between the disk and the output port waveguide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call