Abstract

Roof is a weak part of the building envelope due to the high intensity of solar radiation in summer. Improving thermal performance of roof is crucial to reduce energy consumption. In this study, the thermal performance of a new ventilation roof with shape-stabilized phase change material (SPCM) is investigated. The dynamic heat transfer model for this roof is established by coupling the number of transfer units (NTU) heat exchange model with the resistance-capacity dynamic heat network model and used to analyse the heat transfer. The accuracy of the model is validated by experiment. The indoor air temperature, internal surface temperature of the roof, and cumulative cooling load in summer are simulated and analysed in Wuhan. The results show that PCM and night ventilation have great energy saving potential. When the 30 mm PCM is applied, the peak indoor air temperature and peak internal surface temperature decreased by 2.9 °C and 5.5 °C, respectively, and the cumulative cooling load of the building decreases by 19.2%. When night ventilation is applied (v = 3 m/s), the average latent heat utilization rate of the PCM layer increases, and the cumulative cooling load decreases by 22.9% and 37.5% compared with the PCM roof and the reference roof, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call