Abstract
In 1970s, Gutman introduced the concept of the energy E ( G ) for a simple graph G , which is defined as the sum of the absolute values of the eigenvalues of G . This graph invariant has attracted much attention, and many lower and upper bounds have been established for some classes of graphs among which bipartite graphs are of particular interest. But there are only a few graphs attaining the equalities of those bounds. We however obtain an exact estimate of the energy for almost all graphs by Wigner’s semi-circle law, which generalizes a result of Nikiforov. We further investigate the energy of random multipartite graphs by considering a generalization of Wigner matrix, and obtain some estimates of the energy for random multipartite graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.