Abstract

In this paper we demonstrate how the potential energy surface of a protein, which determines its conformational degrees of freedom, can be constructed from a series of advanced nonlinear optical experiments. The energy landscape of myoglobin was probed by studying its low-temperature structural dynamics, using several spectral hole burning and photon echo techniques. The spectral diffusion of the heme group of the protein was studied on a time scale ranging from nanoseconds to several days while covering a temperature range from 100 mK to 23 K. The spectral line broadening, as measured in three-pulse stimulated photon echo experiments, occurs in a stepwise fashion, while the exact time dependence of the line width is critically dependent on temperature. From these results we obtained the energy barriers between the conformational states of the protein. Aging time dependent hole-burning experiments show that, at 100 mK, it takes several days for the protein to reach thermal equilibrium. When, after this pe...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call