Abstract

For equivariant maps from a compact homogeneous space into an adjoint orbit of a compact Lie group, it is shown that the energy function is the restriction of a quadratic function on the Lie algebra, providing the orbit has the metric induced from the Lie algebra. One obtains a simple version of the harmonic map equation, and an identity relating the energy and the square of the norm of the moment map. Several applications are given, including an example which illustrates how a change of metric in a flag manifold affects the harmonicity of equivariant maps from the two-sphere to the flag manifold

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.