Abstract

The spectral energy balance in the wind-wave spectrum is studied with taking into account the energy input from turbulent wind to waves, the energy rearrangement due to conservative nonlinear wave-wave interaction and the energy dissipation due to water turbulence. Using the Ichikawa's (1978) model on the turbulent wind field over wind-waves and assuming that the energy dissipation isβ times greater than that due to molecular viscosity of water, the energy input and dissipation are determined so as to satisfy the condition that the nonlinear-transfers of momentum and energy conserve the total momentum and energy of waves. The nonlinear energy-transfer is estimated from the energy balance at each frequency. It is found that the energy input and dissipation satisfying the condition on the conservative nonlinear-transfer are determined by the characteristic height of wind-wave field and the friction velocity of air, and that the spectral distribution of the nonlinear energy-transfer estimated in this paper is qualitatively similar to that estimated by the non-linear wave-wave interaction theory ofHasselmann (1962).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.