Abstract

The structure and energetics of free radicals, ions, and clusters have been investigated by photoelectron photoion coincidence (PEPICO) and analyzed with ab initio molecular orbital and statistical theory RRKM calculations. In these experiments, molecules are prepared in a molecular beam so that their internal as well as translational energies are cooled to near O K. The coincidence condition between energy analyzed electrons and their corresponding ions insures that the ions are energy selected. The primary experimental information includes ionization and fragment ion appearance energies, and the ion time of flight (TOF) distributions. The latter are obtained by using the energy selected electron as a start signal and the ion as the stop signal. These types of experiments allow us to measure the ion dissociation rates in the 10{sup 4} to 10{sup 7} sec {sup {minus}1} range. Such ions are commonly referred to a metastable ions. In addition, the TOF peak widths are related to the release of translational energy in the ion dissociation process. Perhaps the most important advance during the past year has been in the study of cluster photoionization. We have developed an experimental method for differentiating similar mass cluster ions based on the kinetic energy of the ions measured by TOF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.