Abstract

Within hibernating myocardium, it is uncertain whether a normal energetic state is present at baseline and whether maintaining that energy state during a catecholamine challenge is dependent on ATP-dependent potassium channel opening. In this study, 16 swine underwent a thoracotomy with placement of an external constrictor on the left anterior descending coronary artery (LAD) (hibernation model). Seven additional swine underwent a sham operation. At 10 wk, the myocardial energetic state in the LAD region was assessed by (31)P-NMR spectroscopy, and the ratio of phosphocreatine to ATP (PCr/ATP) was determined at baseline, during glibenclamide treatment (0.5 mg/kg bolus with 50 microg/min iv), and during addition of dobutamine (40 microg x kg(-1) x min(-1) iv). At baseline, transmural blood flow in the LAD and remote region was 0.75 +/- 0.11 and 0.88 +/- 0.09 ml x min(-1) x g(-1), respectively (P < 0.01), in hibernating hearts and 0.83 +/- 0.12 and 0.88 +/- 0.15 ml x min(-1) x g(-1), respectively (not significant), in sham-operated hearts. Under basal conditions, PCr/ATP in the LAD region of hibernating and sham pigs was 2.15 +/- 0.04 and 2.11 +/- 0.05, respectively (not significant). In sham pigs, addition of dobutamine to glibenclamide increased the double product from 10.4 +/- 0.8 to 23.9 +/- 4.0 mmHg x beats x min(-1) x 1,000 (P < 0.05) and decreased transmural PCr/ATP from 2.06 +/- 0.06 to 1.69 +/- 0.06 (P < 0.05). Dobutamine increased the double product in hibernating pigs in a similar fashion and, despite a 40% lower blood flow response, induced an equivalent decrease in PCr/ATP from 2.04 +/- 0.04 to 1.73 +/- 0.08 (P < 0.05). In conclusion, we found that, in chronic hibernating swine myocardium with reduced basal blood flow and perfusion reserve, the transmural energetic state, defined by PCr/ATP, is normal during addition of dobutamine, despite inhibition of ATP-dependent potassium channel opening with glibenclamide. These data suggest that important adaptations other than the ATP-dependent potassium channel opening allow hibernating myocardium to operate over a lower range of the oxygen supply-demand relationship to protect against myocardial ischemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.