Abstract
Chloroplast lipids are synthesized via two distinct pathways: the plastidic pathway and endoplasmic reticulum (ER) pathway. We previously reported that the contribution of the two pathways toward chloroplast development is different between mesophyll cells and guard cells in Arabidopsis leaf tissues and that the ER pathway plays a major role in guard cell chloroplast development. However, little is known about the contribution of the two pathways toward chloroplast development in other tissue cells, and in this study, we focused on root cells. Chloroplast development is normally repressed in roots but can be induced when the roots are detached from the shoots (root greening). We found that, similar to guard cells, root cells exhibit a higher proportion of glycolipid from the ER pathway. Root greening was repressed in the gles1 mutant, which has a defect in ER-to-plastid lipid transportation via the ER pathway, while normal root greening was observed in the ats1 mutant, whose plastidic pathway is blocked. Lipid analysis revealed that the gles1 mutation caused drastic decrease in the ER-derived glycolipids in roots. Furthermore, the gles1 detached roots showed smaller chloroplasts containing less starch than WT. These results suggest that the ER pathway has a significant contribution toward chloroplast development in the root cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.