Abstract

Brain-derived neurotrophic factor (BDNF) is known to have neuroprotective effects on multiple neurovascular diseases especially poststroke recovery. On the other hand, BDNF reported to increase blood pressure (BP) which is one of the major risk factors for stroke onset. To clarify the conflicting effects on stroke onset, we examined the expression of endogenous BDNF in relation to stroke onset. In addition, we explored the effect of exogenous central BDNF against stroke onset and all-cause mortality as the primary endpoint and BP as the secondary object in hypertensive rats with high-salt diet. In experiment 1, male spontaneously hypertensive stroke-prone rats (SHRSP) were fed a 0.3% (n=8) or an 8% (n=22) sodium diet (Na) through 28days. The SHRSP with 8% Na showed significant increase of stroke onset, all-cause mortality, upregulation of reactive astrocytes, and disruption of blood-brain barrier. BDNF in the rats with 8% Na was significantly upregulated and mainly expressed in reactive astrocytes, whereas phosphorylated tropomyosin-related kinase B did not change by the rich BDNF. In experiment 2, male SHRSP were treated with continuous intracerebroventricular injection of 2.1μg/day BDNF (n=10) or the vehicle (Phosphate buffer saline; n=10) and fed an 8% Na through 24days. Exogenous central BDNF induced significant increase of BP and heart rate, and exhibited higher stroke onset and all-cause mortality compared with vehicle group. The present study demonstrated that endogenous BDNF were significantly produced in reactive astrocytes in relation to stroke onset regardless of neuroprotection. In addition, exogenous central BDNF increased BP which might be associated with sympathetic nerve activity and provided unfavorable effects on the prognosis of hypertensive rats. As BDNF is still potentially a good candidate for the treatment of neurovascular diseases, we suggest that hypertensive patients need care for the elevation of BP in the clinical trials of BDNF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call