Abstract

Theiler’s virus (TMEV) infection of the central nervous system (CNS) induces an immune-mediated demyelinating disease in susceptible mouse strains and serves as a relevant infection model for human multiple sclerosis (MS). The endocannabinoid system represents a novel therapeutic target for autoimmune and chronic inflammatory diseases due to its anti-inflammatory properties by regulating cytokine network. IL-12p70 and IL-23 are functionally related heterodimeric cytokines that play a crucial role in the pathogenesis of MS. In the present study we showed that the endocannabinoid anandamide (AEA) downregulated the gene expression of IL-12p70 and IL-23 forming subunits mRNAs in the spinal cord of TMEV-infected mice and ameliorated motor disturbances. This was accompanied by significant decreases on the serological levels of IL-12p70/IL-23 and more interestingly, of IL-17A. In contrast, serum levels of IL-10 resulted elevated. In addition, we studied the signalling pathways involved in the regulation of IL-12p70/IL-23 and IL-10 expression in TMEV-infected microglia and addressed the possible interactions of AEA with these pathways. AEA acted through the ERK1/2 and JNK pathways to downregulate IL-12p70 and IL-23 while upregulating IL-10. These effects were partially mediated by CB2 receptor activation. We also described an autocrine circuit of cross-talk between IL-12p70/IL-23 and IL-10, since endogenously produced IL-10 negatively regulates IL-12p70 and IL-23 cytokines in TMEV-infected microglia. This suggests that by altering the cytokine network, AEA could indirectly modify the type of immune responses within the CNS. Accordingly, pharmacological modulation of endocannabinoids might be a useful tool for treating neuroinflammatory diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.