Abstract

The antigen-induced release of histamine from sensitized guinea pig mast cells was dose-dependently reduced by endogenous (2-arachidonylglycerol; 2AG) and exogenous [(1R,3R,4R)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3-hydroxypropyl)cyclohexan-1-ol (CP55,940)] cannabinoids. The inhibitory action afforded by 2AG and CP55,940 was reversed by N-[(1S)-endo-1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl]5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)pyrazole-3-carboxamide (SR144528), a selective cannabinoid 2 (CB(2)) receptor antagonist, and left unchanged by the selective CB(1) antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251). The inhibitory action of 2AG and CP55,940 was reduced by the unselective nitric-oxide synthase (NOS) inhibitor N-monomethyl-L-arginine methylester (l-NAME) and reinstated by L-arginine, the physiological substrate. The inhibitory action of 2AG and CP55,940 was also reduced by the unselective cyclooxygenase (COX) inhibitor indomethacin and the selective COX-2 blocker rofecoxib. Both 2AG and CP55,940 significantly increased the production of nitrite from mast cells, which was abrogated by L-NAME and N-(3-(aminomethyl)benzyl)acetamidine (1400W), a selective inducible NOS (iNOS) inhibitor. Nitrite production consistently paralleled a CP55,940-induced increase in the expression of iNOS protein in mast cells. Both 2AG and CP55,940 increased the generation of prostaglandin E(2) from mast cells, which was abrogated by indomethacin and rofecoxib and parallel to the CP55,940-induced expression of COX-2 protein. Mast cell challenge with antigen was accompanied by a net increase in intracellular calcium levels. Both cannabinoid receptor ligands decreased the intracellular calcium levels, which were reversed by SR144528 and l-NAME. In unstimulated mast cells, both ligands increased cGMP levels. The increase was abrogated by SR144528, l-NAME, indomethacin, and rofecoxib. Our results suggest that 2AG and CP55,940 decreased mast cell activation in a manner that is susceptible to a CB(2) receptor antagonist and to inhibition of nitric oxide and prostanoid pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.