Abstract

Substitution of the weakly binding aqua ligand in [Cu(tren)OH2](2+) and [Cu(tpa)OH2](2+) (tren = tris(2-aminoethyl)amine; tpa = tris(2-pyridylmethyl)amine) by a cyano ligand on ferricyanide results in the assembly of heteropolynuclear cations around the cyanometalate core. In water, the reduction of the Fe(III) core to Fe(II) generates complexes that feature heteropolycations in which ferrocyanide is encapsulated by the Cu(II) moieties: [(Cu(tpa)CN)6Fe][ClO4]8-3H2O 1, [(Cu(tren)CN)6Fe][ClO4]8-10H2O 2, [(Cu(tren)CN)6Fe][Fe(CN)6]2[ClO4]2-15.8H2O 3, and [(Cu(tren)CN)6Fe][(Cu(tren)CN)4Fe(CN)2][Fe(CN)6)]4-6DMSO-21H2O 4. The formation of discrete molecules, in preference to extended networks or polymeric structures, has been encouraged through the use of branched tetradentate ligands in conjunction with copper(II), a metal center with the propensity to form five-coordinate complexes. Complex 3 crystallizes in the monoclinic space group P2(1)/c (#14) with a = 14.8674(10), b = 25.9587(10), c = 27.5617(10) A, beta = 100.8300(10) degrees, and Z = 4, and it is comprised of almost spherical heptanuclear cations, [(Cu(tren)CN)6Fe](8+), whose charge is balanced by two ferricyanide and two perchlorate counteranions. Complex 4 crystallizes in the triclinic space group P1 (# 1) with a = 14.8094(8), b = 17.3901(7), c = 21.1565(11) A, alpha = 110.750(3), beta = 90.206(2), gamma = 112.754(3) degrees, and Z = 1, and it is comprised of the heptanuclear [(Cu(tren)CN)6Fe](8+) cation and pentanuclear [(Cu(tren)CN)4Fe(CN)2](4+) cation, whose terminal cyano ligands are oriented trans to each other. The charge is balanced exclusively by ferricyanide counteranions. In both complexes, H-bonding interactions between hydrogens on primary amines of the tren ligand, terminal cyano groups of the ferricyanide counterions, and the solvent of crystallization generate intricate 3D H-bonding networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.