Abstract

An inverted bottle empties in a time Te,0 through a process called “glugging”, whereby gas and liquid compete at the neck (of diameter DN). In contrast, an open-top container empties in a much shorter time Te through “jetting” due to the lack of gas–liquid competition. Experiments and theory demonstrate that, by introducing a perforation (diameter dp), a bottle empties through glugging, jetting, or a combination of the two. For a certain range of dp/DN, the perforation increases the emptying time, and a particular value of dp/DN is associated with a maximum emptying time Te,max. We show that the transition from jetting to glugging is initiated by the jet velocity reaching a low threshold, thereby allowing a slug of air entry into the neck that stops jetting and starts the glugging. Once initiated, the glugging proceeds as though there is no perforation. Experimental results covered a range of Eötvös numbers from Eo∼ 20–200 (equivalent to a range of DN/Lc∼ 4–15, where Lc is the capillary length). The phenomenon of bottle emptying with a perforation adds to the body of bottle literature, which has already considered the influence of shape, inclination, liquid properties, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.