Abstract
Most of the samples in the real world are from the normal distributions with unknown mean and variance, for which it is common to assume a conjugate normal-inverse-gamma prior. We calculate the empirical Bayes estimators of the mean and variance parameters of the normal distribution with a conjugate normal-inverse-gamma prior by the moment method and the Maximum Likelihood Estimation (MLE) method in two theorems. After that, we illustrate the two theorems for the monthly simple returns of the Shanghai Stock Exchange Composite Index.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.