Abstract

The nicotinic acetylcholine receptor is the neurotransmitter receptor with the most-characterized protein structure. The amino acid sequences of its five subunits have been elucidated by cDNA cloning and sequencing. Its shape and dimensions (approximately 12.5 nm x 8 nm) were deduced from electron-microscopy studies. Its subunits are arranged around a five-fold axis of pseudosymmetry in the order (clockwise) alpha H gamma alpha L delta beta. Its two agonist/competitive-antagonist-binding sites have been localized by photolabelling studies to a deep gorge between the subunits near the membrane surface. Its ion channel is formed by five membrane-spanning (M2) helices that are contributed by the five subunits. This finding has been generalized as the Helix M2 model for the superfamily of ligand-gated ion channels. The binding site for regulatory non-competitive antagonists has been localized by photolabelling and site-directed-mutagenesis studies within this ion channel. Therefore a three-dimensional image of the nicotinic acetylcholine receptor is emerging, the most prominent feature of which is an active site that combines the agonist/ competitive-antagonist-binding sites, the regulatory site and the ion channel within a relatively narrow space close to and within the bilayer membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.