Abstract
Symmetry breaking has emerged as a novel strategy to enhance energy conversion and storage performance, which refers to changes in the atomic configurations within a material reducing its internal symmetry. According to the location of the symmetry breaking, it can be classified into spontaneous symmetry breaking within the material, local symmetry breaking on the surface of the material, and symmetry breaking caused by external fields outside the material. However, there are currently few summaries in this field, so it is necessary to summarize how symmetry breaking improves energy conversion and storage performance. In this review, the fundamentals of symmetry breaking are first introduced, which allows for a deeper understanding of its meaning. Then the applications of symmetry breaking in energy conversion and storage are systematically summarized, providing various mechanisms in energy conversion and storage, as well as how to improve energy conversion performance and storage efficiency. Last but not least, the current applications of symmetry breaking are summarized and provide an outlook on its future development. It is hoped that this review can provide new insights into the applications of symmetry breaking and promote its further development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.