Abstract

Communication between leukemia cells and their environment is essential for the development and progression of leukemia. Exosomes are microvesicles secreted by many types of cells that contain protein and RNA and mediate intercellular communication. The involvement of exosomes has been demonstrated in the crosstalk between leukemic cells, stromal cells and endothelial cells, consequently promoting the survival of leukemic cells, protection of leukemic cells from the cytotoxic effects of chemotherapeutic drugs, angiogenesis and cell migration. At the same time, exosomes can be used for the detection and monitoring of leukemia, with some advantage over current methods of detection and surveillance. As they are involved in immune response towards leukemic cells, exosomes can also potentially be exploited to augment immunotherapy in leukemia. In this review, we first describe the general characteristics of exosomes and biogenesis of exosomes. We then highlight the emerging role of exosomes in different types of leukemia. Finally, the clinical value of exosomes as biomarkers, in vivo drug carriers and novel exosome-based immunotherapy are discussed.

Highlights

  • Leukemia is a group of malignant diseases originating from blood or bone marrow cells, including chronic myeloid leukemia (CML), acute myeloid leukemia (AML), chronic lymphoblastic leukemia (CLL) and acute lymphoblastic leukemia (ALL)

  • Leukemic cell derived exosomes contain cargoes such as miRNAs, proteins, mRNA, etc, which might represent a snapshot of the disease states of a leukemia patients

  • Many studies provide evidence that exosomes are involved in survival and proliferation of leukemic cells, resistance to apoptosis and chemotherapeutic drugs, angiogenesis and migration

Read more

Summary

Introduction

Leukemia is a group of malignant diseases originating from blood or bone marrow cells, including chronic myeloid leukemia (CML), acute myeloid leukemia (AML), chronic lymphoblastic leukemia (CLL) and acute lymphoblastic leukemia (ALL). Exosomes isolated from the sera of AML patients contain membrane-associated TGF-β1, which reduces the ability of natural killer (NK) cells to kill leukemic cells by reducing NKG2D expression and activating the SMAD pathway [8]. Jurkat and Raji leukemia/lymphoma cells increase their release of exosomes that express the NKG2D ligands MICA, Figure 1: Biogenesis of exosomes.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.