Abstract

BackgroundKlebsiella pneumoniae is a public health concern because of its ability to develop multidrug resistance and hypervirulent genotypes, of those capsular types K1 and K2 cause community and nosocomial life-threatening infections. This study aimed to determine the antibiotic susceptibility patterns and genotypic traits of a collection of Klebsiella spp. isolates. Furthermore, the clonal relatedness of blaNDM producing strains was investigated.MethodsDuring a 19-months surveillance study, 122 Klebsiella spp. isolates were cultured from extraintestinal specimens of patients admitted to the tertiary referral hospital in Semnan, Iran. Isolates were identified using biochemical tests and subjected to determination of phylogroups, capsular types and virulence/resistance genes content. Hypervirulent K. pneumoniae (hvKp) strains were detected genotypically, and Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR fingerprinting was used to determine the clonality of blaNDM producing strains.ResultsMultidrug resistant phenotype was detected in 75 (61.5%) isolates and amikacin was found as the most potent antibiotic with the susceptibility rate of 85.2%. The carbapenemase genes were detected in 45 (36.8%) strains, including 21 (17.2%) blaOXA-48, 7 (5.6%) blaNDM-1, 14 (11.4%) blaNDM-1/OXA-48 and 3 (2.4%) blaIMP- carrying strains, while 55 (45.08%) isolates showed carbapenem resistant phenotype. The first blaNDM-1 carrying strain was cultured from a sputum specimen on March 2015, while the last positive one was recovered from blood culture on September 2016. Most of the isolates (80.3%) belonged to phylogroup I, and blaNDM-1 was identified among all three phylogroups. The ERIC-PCR clustered the 101 blaNDM negative and 21 blaNDM-1 positive isolates into 25 and five clusters, respectively, and the latter group belonged to clonal complex 147 (CC147). One K1 and 15 K2 blaNDM-1 negative isolates were detected, of those three strains were identified as hvKp. Five K2 positive strains, including four blaOXA-48 producer and one hvKp sequence type 86 (ST86) were carbapenem resistant. Among carbapenem resistant isolates, CC147 strains harboured higher rates of siderophores iutA and ybtS.ConclusionThe present findings showed a hospital circulation of CC147 blaNDM-1 or blaNDM-1/OXA-48 producing strains, disseminated in different wards. The hvKp/ST86 strain expressing K2 capsular type and carbapenem resistant phenotype wasn’t reported from Iran so far. So, it seems that we must be aware of the emergence and spread of new K. pneumoniae clones associated with resistant and hypermucoviscous phenotypes.

Highlights

  • Klebsiella pneumoniae is a public health concern because of its ability to develop multidrug resistance and hypervirulent genotypes, of those capsular types K1 and K2 cause community and nosocomial life-threatening infections

  • Our goal was first to determine the phylogenetic groups, capsular genotypes, hypermucoviscosity biomarkers, and resistance determinants of K. pneumoniae isolates collected during 19-months surveillance study and second, to carry out sequence typing of representatives of NDM producing isolates based on the Enterobacterial Repetitive Intergenic Consensus (ERIC) fingerprinting

  • Antibiotic susceptibility patterns and frequency of resistance genes The highest susceptibility rate was obtained against amikacin (104, 85.2%), followed by meropenem (81, 66.4%), imipenem (77, 63.1%) and gentamicin (74, 60.7%)

Read more

Summary

Introduction

Klebsiella pneumoniae is a public health concern because of its ability to develop multidrug resistance and hypervirulent genotypes, of those capsular types K1 and K2 cause community and nosocomial life-threatening infections. The emergence of hypervirulent variants of K. pneumoniae (hvKp) which characteristically express hypermucoviscosity phenotype caused serious concerns [2]. These strains carry virulence genes associated with invasive disease and may cause severe infections such as pyogenic liver abscesses and endophthalmitis, in immunocompetent, healthy individuals [2]. Of special concern is the acquisition of carbapenem resistance genes and development of carbapenem resistant phenotype, since these agents are the last resort of antibiotics for treatment of infections caused by multidrug resistant organisms [2]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call