Abstract
Escherichia coli pathogenic variants (pathovars) are generally characterized by defined virulence traits and are susceptible to the evolution of hybridized identities due to the considerable plasticity of the E. coli genome. We have isolated a strain from a purified diet intended for research animals that further demonstrates the ability of E. coli to acquire novel genetic elements leading potentially to emergent new pathovars. Utilizing next generation sequencing to obtain a whole genome profile, we report an atypical strain of E. coli, EcoFA807-17, possessing a tetrathionate reductase (ttr) operon, which enables the utilization of tetrathionate as an electron acceptor, thus facilitating respiration in anaerobic environments such as the mammalian gut. The ttr operon is a potent virulence factor for several enteric pathogens, most prominently Salmonella enterica. However, the presence of chromosomally integrated tetrathionate reductase genes does not appear to have been previously reported in wild-type E. coli or Shigella. Accordingly, it is possible that the appearance of this virulence factor may signal the evolution of new mechanisms of pathogenicity in E. coli and Shigella and may potentially alter the effectiveness of existing assays using tetrathionate reductase as a unique marker for the detection of Salmonella enterica.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.