Abstract

A significant problem of the origin of life is the emergence of cellular self-replication. In the context of the “RNA world”, a crucial concern is how the RNA-based protocells could achieve the ability to produce their own membrane. Here we show, with the aid of a computer simulation, that for these protocells, there would be “immediately” a selection pressure for the emergence of a ribozyme synthesizing membrane components. The ribozyme would promote the enlargement of cellular space and favor the incoming (by permeation) of RNA's precursors, thus benefit the replication of inner RNA, including itself. Via growth and division, protocells containing the ribozyme would achieve superiority and spread in the system, and meanwhile the ribozyme would spread in the system. The present work is inspiring because it suggests that the transition from molecular self-replication to cellular self-replication might have occurred naturally (and necessarily) in the origin of life, leading to the emergence of Darwinian evolution at the cellular level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.