Abstract
A model of intentional actions is presented through the operation of two connected neural networks. A deterministic causal recurrent network relates a random initial state to an ordered final state. A perceptron-like, feed-forward network provides a memory mechanism that links the final states to the original initial states. A non-supervised learning mechanism that selects which final states are defined as goals to be retrieved together with initial states leading to them. Causal sequences of states are transformed into procedures directed towards the achievements of goals. We propose a mechanism through which goals and their achievement in goal-directed actions can be emerging properties of self-organizing networks, not initially endowed with intentionality. This allows for a monist, non-mentalist description which does not need to resort to intentional mental states as causes of intentional actions. Cognitive, neurophysiological and philosophical implications are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.