Abstract

BackgroundGlioblastoma multiforme (GBM) is the most common malignant tumor of the central nervous system, accounting for 48.6% of malignant tumors. The current standard treatment plan includes the widest range of safe surgical resection, supplemented by local brain radiotherapy and temozolomide concurrent chemotherapy; this can cause serious side effects. Even so, the median survival time of GBM patients is only 8 months, and the 5-year survival rate is only 5.5%. It is imminent to find new treatments. Early studies have shown that chicken and zebrafish embryos can reprogram cancer cells into a non-tumorigenic phenotype through the embryonic microenvironment. However, the effect of embryonic stem cell microenvironment on GBM and its possible mechanism are not clear.MethodsIn this study, the glioblastoma cell line, U118, in the brain was investigated. There were four experimental groups: GB, GE, GA and GT. U118 cells were harvested after culturing for 72 hours. Cell proliferation, apoptosis, reactive oxygen species (ROS) were examined using vasculogenic mimicry assays, quantitative real-time polymerase chain reaction (QRT-PCR), western blotting (WB) and flow cytometry. The differences in the biological function of U118 cells and the PI3K/protein kinase B (AKT) signaling pathway were compared between the groups.ResultsCompared with the GB control group, the GE co-culture group and GT chemotherapy group showed reduced cell proliferation, increased apoptosis, increased ROS, as well as decreased or inhibited vasculogenic mimicry. Expressions of cyclin B1 and cyclin D1 were also notably reduced, while that of Bax, Bcl-2, p53, Caspase-3, GSK-3β, p21, and p27 were significantly increased. Moreover, the expression of PI3K, AKT, and mTOR were markedly decreased, whereas expression of PTEN increased considerably. Also, the expression of positive regulatory factors significantly increased, however negative regulatory factors decreased in the GA group compared to the GE group.ConclusionsThe ESC microenvironment reverses glioma malignancy, partially via inhibition of the PI3K signaling pathway. Our study may have a significant impact and important clinical implications for cell therapy in the treatment of glioma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.