Abstract
One of the widely used metrics in lesion-symptom mapping is lesion load that codes the amount of damage to a given brain region of interest. Lesion load aims to reduce the complex 3D lesion information into a feature that can reflect both site of damage, defined by the location of the region of interest, and size of damage within that region of interest. Basically, the process of estimation of lesion load converts a voxel-based lesion map into a region-based lesion map, with regions defined as atlas-based or data-driven spatial patterns. Here, after examining current definitions of lesion load, four methodological issues are discussed: (1) lesion load is agnostic to the location of damage within the region of interest, and it disregards damage outside the region of interest, (2) lesion load estimates are prone to errors introduced by the uncertainty in lesion delineation, spatial warping of the lesion/region, and binarization of the lesion/region, (3) lesion load calculation depends on brain parcellation selection, and (4) lesion load does not necessarily reflect a white matter disconnection. Overall, lesion load, when calculated in a robust way, can serve as a clinically-useful feature for explaining and predicting post-stroke outcome and recovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.