Abstract
AbstractWe consider definable topological dynamics for NIP groups admitting certain decompositions in terms of specific classes of definably amenable groups. For such a group, we find a description of the Ellis group of its universal definable flow. This description shows that the Ellis group is of bounded size. Under additional assumptions, it is shown to be independent of the model, proving a conjecture proposed by Newelski. Finally we apply the results to new classes of groups definable in o-minimal structures, generalizing all of the previous results for this setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The Journal of Symbolic Logic
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.