Abstract

We consider self-similar potential flow for compressible gas with polytropic pressure law. Self-similar solutions arise as large-time asymptotes of general solutions, and as exact solutions of many important special cases like Mach reflection, multidimensional Riemann problems, or flow around corners. Self-similar potential flow is a quasilinear second-order PDE of mixed type which is hyperbolic at infinity (if the velocity is globally bounded). The type in each point is determined by the local pseudo-Mach number L, with L < 1 (respectively, L > 1) corresponding to elliptic (respectively, hyperbolic) regions. We prove an ellipticity principle: the interior of a parabolic-elliptic region of a sufficiently smooth solution must be elliptic; in fact L must be bounded above away from 1 by a domain-dependent function. In particular there are no open parabolic regions. We also discuss the case of slip boundary conditions at straight solid walls.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.