Abstract
AbstractWe calculate equivariant elliptic cohomology of the partial flag variety$\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}G/H$, where$H\subseteq G$are compact connected Lie groups of equal rank. We identify the${\rm RO}(G)$-graded coefficients${\mathcal{E}} ll_G^*$as powers of Looijenga’s line bundle and prove that transfer along the map$$\begin{equation*} \pi \,{:}\,G/H\longrightarrow {\rm pt} \end{equation*}$$is calculated by the Weyl–Kac character formula. Treating ordinary cohomology,$K$-theory and elliptic cohomology in parallel, this paper organizes the theoretical framework for the elliptic Schubert calculus of [N. Ganter and A. Ram,Elliptic Schubert calculus, in preparation].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.