Abstract

We study the elliptic genus (a partition function) in certain interacting, twist quantum field theories. Without twists, these theories have N=2 supersymmetry. The twists provide a regularization, and also partially break the supersymmetry. In spite of the regularization, one can establish a homotopy of the elliptic genus in a coupling parameter. Our construction relies on a priori estimates and other methods from constructive quantum field theory; this mathematical underpinning allows us to justify evaluating the elliptic genus at one endpoint of the homotopy. We obtain a version of Witten's proposed formula for the elliptic genus in terms of classical theta functions. As a consequence, the elliptic genus has a hidden SL(2, ℤ) symmetry characteristic of conformal theory, even though the underlying theory is not conformal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.