Abstract

The use of flavored e-liquids in electronic nicotine delivery systems (ENDS) has become very popular in recent years, but effects of these products have not been well characterized outside the lung. In this study, acute exposure to the popular flavoring vanillin (VAN) was performed on human proximal tubule (HK-2) kidney cells. Cells were exposed to 0–1000 μM VAN for 24 or 48 h and cellular stress responses were determined. Mitochondrial viability using MTT assay showed a significant decrease between the control and 1000 μM group by 48 h. Seahorse XFp analysis showed significantly increased basal respiration, ATP production, and proton leak after 24 h exposure. By 48 h exposure, these parameters remained significantly increased in addition to non-mitochondrial respiration and maximal respiration. Glycolytic activity after 24 h exposure showed significant decreases in glycolysis, glycolytic capacity, glycolytic reserve, and non-glycolytic acidification. The autophagy markers microtubule-associated protein 1A/1B light chain 3 (LC3B–I and LC3B-II) were probed via western blotting. The ratio of LC3B-II/LC3B–I was significantly increased after 24 h exposure to VAN, but by 48 h this ratio significantly decreased. The mitophagy marker PINK1 showed an increasing trend at 24 h, and its downstream target Parkin was significantly increased between the control and 750 μM group only. Finally, the oxidative stress marker 4-HNE was significantly decreased after 48 h exposure to VAN. These results indicate that acute exposure to VAN in the kidney HK-2 model can induce energy and autophagic changes within the cell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call