Abstract
With increasing water reuse as a sustainable water management strategy, antibiotic resistance genes (ARGs) which have been identified as emerging contaminants in wastewater are attracting global attentions. Given that wastewater treatment plants are now well-established as a sink and source of ARGs in both cell-associated and non-cell-associated forms, a need is acknowledged to reduce their proliferation and protect public health. Due to their different characteristics, cell-associated and non-cell-associated ARGs may have distinct responses to membrane filtration processes which are widely used as advanced treatment to the secondary effluent. This review improves the understanding of the abundance of cell-associated and non-cell-associated ARGs in wastewaters and the secondary effluents and compares the elimination of ARGs in cell-associated and non-cell-associated forms by low-pressure and high-pressure membrane filtration processes. The former process reduces the concentration of cell-associated ARGs by more than 2-logs on average. An increase of the retention efficiency of non-cell-associated ARGs is observed with decreasing molecular weight cut-offs in ultrafiltration. The high-pressure membrane filtration (i.e., nanofiltration and reverse osmosis) can effectively eliminate both cell-associated and non-cell-associated ARGs, with averagely more than 4.6-log reduction. In general, the two forms of ARGs can be removed from water by the membrane filtration processes via the effects of size exclusion, adsorption, and electrostatic repulsion. The size and conformation of cell-associated and non-cell-associated ARGs, characteristics of membranes, coexisting substances, and biofilm formation influence ARG retention. Accumulation and potential proliferation of cell-associated and non-cell-associated ARGs in foulants and concentrate and corresponding control strategies warrant future research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.