Abstract

In a 1987 paper, Eliahou and Kervaire constructed a minimal resolution of a class of monomial ideals in a polynomial ring, called stable ideals. As a consequence of their construction they deduced several homological properties of stable ideals. Furthermore they showed that this resolution admits an associative, graded commutative product that satisfies the Leibniz rule. In this paper we show that their construction can be extended to stable ideals in skew polynomial rings. As a consequence we show that the homological properties of stable ideals proved by Eliahou and Kervaire hold also for stable ideals in skew polynomial rings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.