Abstract

Mg–10Gd–3Y–0.4Zr (wt.%) was peak-aged (solution heat-treatment at 490 °C/8 h with subsequent aging at 250 °C/16 h) and tested in tension and compression at temperatures between 25 °C and 350 °C, in fatigue at 25 °C and 300 °C, and in tensile creep at 250 °C and 300 °C. The tensile and compression testing showed high values of ultimate tensile stresses (UTS) and compressive peak stresses, both of which were above 300 MPa at temperatures up to 250 °C. At temperatures higher than 250 °C, the peak stresses rapidly decreased. The fatigue experiments indicated that the fatigue lives were not sensitive to temperatures between 25 and 300 °C. The fatigue limit was between 50 and 75 MPa. The creep experiments suggested that in the applied stress range of 30–120 MPa the dominant secondary creep deformation mechanism was dislocation climb. The dense distribution of precipitating prismatic particles in the matrix of the magnesium solid solution aided the creep resistance. In the lower-temperature and lower-applied stress creep regime (e.g. longer creep life), intensive creep cavitation was observed at the grain boundaries in the form of cavitated grain facets and a high fraction of cavitated boundaries (∼45%). In the higher-temperature and higher-stress creep regime, failure occurred in the form of mixed grain boundary cavitation and cracking. In both cases the preferred cavity and crack nucleation sites were particles of secondary phases situated on the grain boundaries or triple junctions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.