Abstract
We have investigated the hydrodynamic drag force between charged particles in electrolyte solutions, specifically the electroviscous force that arises from the distortion of the electrical double layers by the flow field. We report an improvement on the thin-double-layer theory (S.G. Bike, D.C. Prieve, J. Colloid Interface Sci. 136 (1990) 95–112), using a more accurate boundary condition for the radial charge current. The differences become important when the double layers start to overlap. We have found that nonlinear hydrodynamic effects are small, whereas nonlinear electric effects can be significant, in some instances leading to qualitatively different behavior. If the ion diffusivities are highly asymmetric, the electroviscous force can be reduced by an order of magnitude when there is an excess of the mobile ions in the double layer. The common supposition that there are substantial differences in the electroviscous force predicted by constant-charge and constant-potential boundary conditions is incorrect; our calculations show that it is an artifact introduced by the Debye–Hückel approximation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.