Abstract

This article describes an experimental and theoretical investigation of the so-called primary electroviscous effect, i.e., the increase in suspension viscosity due to the existence of an electrical double layer around the particles. By measuring the viscosity of ethylcellulose latex suspensions, the electroviscous coefficient, the quantity measuring the effect, was estimated for different concentrations of 1-1 electrolyte in the dispersion medium. These data were compared with the predictions of Watterson and White's model, using the zeta potential of the particles deduced from electrophoretic mobility measurements. It was found that the theory considerably underestimates the effect. In an attempt to improve the agreement between data and predictions, the model was generalized to include the possibility (dynamic Stern layer) that ions in the inner part of the double layer have nonzero mobility. The general theory, however, predicts even lower values of the electroviscous coefficients, thus increasing the separation between calculated and measured electroviscous coefficients. A careful analysis of the ionic concentrations and velocity profiles with and without dynamic Stern layer corrections can account for this fact, but leaves unsolved the problem of the large discrepancies found in the theoretical explanation of the strength of the electroviscous effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call