Abstract

PurposeThis study aims to examine the electromigration processes resulting from thermal overloads of semiconductor devices. While in operation, parts of such devices can heat up to 330°C for a short period, resulting in the emergence of molten zones and the devices’ inevitable degradation. Therefore, this study examines the mechanisms behind the formation and migration of silver-based molten zones in bulk germanium and on its surface.Design/methodology/approachExperimental data concerning the correlation between the migration velocities of the inclusions and their sizes are obtained.FindingsBy comparing these experimental data with known electromigration models, it is concluded that inclusions move through the mechanism of melting and crystallization. The dynamics of Ge–Ag zones in the volume of a germanium crystal are compared to those on its surface and accelerated electromigration on the surface of the crystal is observed. This increased migration velocity is shown to be associated with additional contributions of the electrocapillary component.Originality/valueThe results of this study can be used to calculate the operating modes of semiconductor power devices under intense heat loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.