Abstract
The charge density distribution in the crystal structure of ammonium dimethylphosphate at 123 K has been determined from x-ray diffraction data (MoK alpha) using 8437 reflections with sin theta/lambda less than 1.33 A-1 [NH4+.(CH3)2PO4-, M(r) = 143.08, monoclinic, P2(1)/c, a = 10.007(1), b = 6.926(1), c = 9.599(2) A, beta = 105.40(1) degrees, V = 641.4(3) A3, Z = 4, F000 = 304, Dx = 1.4815 g.cm-3, mu = 3.726 cm-1]. Least-squares structure refinement assuming Stewart's rigid pseudoatom model (variables including Slater-type radial exponents and electron populations for multipole terms extending to octapoles for C, N, O, and P, and dipoles for H) gave R(F2) = 0.039 for all reflections. The dimethylphosphate anion is in the gauche-gauche conformation and has approximate twofold symmetry. One phosphoryl O atom forms three hydrogen bonds and the other forms one. Neither of the ester O atoms is hydrogen bonded. For the dimethylphosphate anion isolated from the crystal structure, a map of the electrostatic potential obtained using the pseudoatom charge parameters shows that the phosphoryl O atoms are considerably more electronegative than the ester O atoms. The electrostatic potential distribution obtained in this way has been fitted by least squares to a system of atom-centered point charges. The potential calculated from these point charges agrees with the experimental result. It also agrees reasonably well with potentials obtained from three other systems of point charges that are widely used as part of the semiempirical force field for molecular mechanics and molecular dynamics calculations involving nucleic acids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.