Abstract

Dengue virus causes serious diseases and deaths in the world. Understanding the fundamental mechanisms of dengue virus is highly demanded to develop treatments for dengue virus caused diseases. Here, we present a computational work which focused on the stability of dengue viral capsid. The interactions among E proteins on the dengue viral capsid were studied using several computational approaches. It was found that the electrostatic distribution on a single E protein monomer is highly inhomogeneous, which makes an E protein strongly binding with another E protein. This is the reason why all the E proteins form homodimers as the basic units on the whole dengue viral capsids. The pKa calculations of E proteins demonstrated that the folding energy of an E protein is low and stable in the range of pH 6–10, which is different from many other proteins that are stable at certain pH. The pH dependence of binding energy of E protein homodimer shows that the binding energy is low and independent from pH when the pH is also in the range of 6–10. This finding implies that the dengue virus can survive in a wide range of pH, which can explain why the dengue virus is so widely distributed in the world and spreads fast.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.