Abstract

Electrostatic side chain contacts can contribute substantial interaction energy terms to the stability of proteins. The impact of electrostatic interactions on the structure and architecture of outer membrane proteins is however not well studied compared to soluble proteins. Here, we report the results of a systematic study of all charged side chains of the E. coli outer membrane protein X (OmpX). The data identify three distinct salt-bridge clusters in the core of OmpX that contribute significantly to protein stability in dodecylphosphocholine detergent micelles. The three clusters form an “electrostatic core” of the membrane protein OmpX, corresponding in its architectural role to the hydrophobic core of soluble proteins. This article is part of a Special Issue entitled: Molecular biophysics of membranes and membrane proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call